检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海理工大学学报》2002年第4期337-340,344,共5页Journal of University of Shanghai For Science and Technology
基 金:国家自然科学基金资助项目(59876023);上海市教委青年基金资助项目(02QG22)
摘 要:利用六阶紧致差分格式、结合多重网格V循环算法求解了二维泊松方程的Dirichlet边值问题,并用不同的松弛算子与四阶精度格式的多重网格方法进行了比较. 计算结果表明,该方法在不明显增加计算量的前提下较四阶精度格式的多重网格方法具有更好的精确度和收敛阶,且ZLGS迭代不论对四阶精度还是对六阶精度格式的多重网格算法,都是一种较其他松弛算子更加有效的“光滑剂”.A sixth-order compact difference scheme and multigrid V-cycle algorithm are employed to solve the two-dimensional Poisson equation with Dirichlet boundary conditions. This scheme, along with several different relaxation operators, is compared with the fourth-order formula to show the dramatic improvement in both computed accuracy and convergence rate without distinctly increasing computational cost. Further more, Zebra Line Gauss-Seidel (ZLGS) relaxation is a more efficient smoother than other relaxation operators for no matter fourth-order or sixth-orer formula with multigrid method.
关 键 词:泊松方程 六阶紧致格式 多重网格 斑马线高斯塞德尔迭代
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117