检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:成卫青[1]
机构地区:[1]南京邮电学院计算机科学与技术系
出 处:《南京邮电学院学报(自然科学版)》2002年第4期33-38,共6页Journal of Nanjing University of Posts and Telecommunications
摘 要:给出了用模糊感知器学习算法和(ε,δ)准则估计多元线性回归模型回归系数的详细算法,讨论了学习速率、ε和δ的设定;并与经典的回归系数估计方法最小二乘法作比较,发现总体拟合最好的特性对于含异常数据(noisydata)的情况反而会使预测值背离事实更远,而基于模糊感知器的学习算法实现线性回归具有编程简单、对数据无特殊要求而且对数据的容错性较高的优点,可用来实现数据挖掘所需要的预测和异常检测功能。In this paper a detailed algorithm for multiple linear regression coefficients evaluation is provided, which employs a training algorithm for fuzzy perceptron based on a socalled (ε,δ)criteria . After the setting of the learning rate λ and the fuzzy degree (ε,δ) are addressed, the neural method named FPMLR is compared to the classical least squares method for regression coefficients evaluation. As a result, we conclude that the neural method is superior to the least squares method in robustness aspect due to its feature of fuzziness, which may contribute to omitting noisy data. Finally, we suggest that the neural method be applied to the implementation of prediction and abnormal detection required by data mining.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112