检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空学院振动工程研究所,南京210016
出 处:《航空学报》1992年第9期A480-A483,共4页Acta Aeronautica et Astronautica Sinica
摘 要:当振动系统的质量矩阵和刚度矩阵作小修改时,不重复求解大型广义特征问题,在初始的模态坐标变换基础上,用矩阵摄动法给出修改系统的振动频率和振型;然后利用修改系统的振动频率与比例阻尼参数求出修改系统的阻尼比。工程算例表明,这种方法计算简单,具有较高的精度。A perturbation method for analyzing the vibration frequencies, damping ratios and modes of damped vibration system, whose matrices have small changes, is presented in this paper. When the mass and stiffness matrices of the original syatem vary slightly, the eigensolutions can be obtained without solving a large generalized eigenvalue problem again. The vibration frequencies and modes of the updated system can be derived by matrix perturbation method based on the original vibraton mode coordinate transformation. The damping ratios of the updatea system can also be given by using the vibration frequencies of the updated system and proportional damping parameters. The results of the engineering computational examples show that the presented method having simple computational and high accuracy properties is an available perturbation method.
分 类 号:V214.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145