检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子学报》2003年第4期608-611,共4页Acta Electronica Sinica
基 金:8 63基金 (No 2 0 0 1AA1 1 4 0 71 )
摘 要:尽管作为当前最为流行的语音识别模型 ,HMM由于采用状态输出独立同分布假设 ,忽略了对语音轨迹动态特性的描述 .本文基于一个更为灵活的语音描述统计框架—广义DDBHMM ,提出了一个具体的多项式拟合语音轨迹模型 ,以及新的训练和识别算法 ,更好地刻划了真实的语音特性 .本文还给出了一种有效的剪枝算法 ,得到一个实用化模型 .汉语大词汇量非特定人连续语音识别的实验表明 。Although as the most popular model for speech recognition, HMM takes no account of the dynamics of the speech trajectory, since it assumes the outputs of a state to be independent and identically distributed. In this paper, based on a more flexible statistical framework for speech description-the generalized DDBHMM, a particular polynomial-fitting speech-trajectory model is proposed with new algorithms for training and recognition. It describes the real characteristics of speech more reasonably. With the effective path-pruning algorithm additionally proposed, it becomes a practicable model. Experiments on Chinese large-vocabulary speaker-independent continuous speech recognition show that with this path-pruned polynomial-fitting speech-trajectory model, the recognition performance is improved distinctively at relatively low computational cost.
关 键 词:连续语音识别 隐马尔可夫模型 基于段长分布的隐马尔可夫模型
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.32