检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭云柯[1]
机构地区:[1]广西工学院
出 处:《华中理工大学学报》1992年第3期33-38,共6页Journal of Huazhong University of Science and Technology
摘 要:本文根据工程中的需要,提出一新型最佳一致逼近问题:函数族u(α,x)在随参数α而变化的定义域X(α)上取值、参数α在点集A(A中的点α对应的X(α)非空)中取值时的最佳一致逼近问题.文中给出了判别最佳逼近函数的Kolmogorov型定理、一阶和二阶必要条件和充分条件、以及一阶二阶局部唯一性定理.A new type of the uniformly best approximation problem is proposed to meet the requirement in the engineering field. This problem consists in a function family u(a,x) being defined in the domain of definiton X(a) which depends on the parameter a and the parameter o belongs to the point set A (the set X(a) corresponding to the parameter a in A is nonempty). The sufficient condition and necessary condition of the Kolmogorov type, the first-order sufficient condition and necessary condition and the second -order sufficient condition and necessary condition for a function to be best approximation are derived. The first-order and second-order sufficient conditions are also the local uniqueness conditions, and the first-order sufficient condition can be taken as a generalization of the Haar uniqueness theorem in the problem of the uniformly best approximation proposed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30