检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力系统自动化》2003年第11期25-29,共5页Automation of Electric Power Systems
摘 要:粒子群优化法 ( PS算法 )具有全局性能好、搜索效率高等优点。文中应用该算法进行电力系统负荷模型的参数辨识 ,并将其与模拟进化算法进行比较 ,发现 PS算法在计算时间、全局性方面均有比较明显的优势。讨论了 PS算法中用以调节全局搜索和局部搜索关系的权重 w与搜索效率之间的关系 ,并给出了适用于电力系统负荷参数辨识的 w值。提出了一种利用 PS算法的收敛快速性来提高全局性能的工程实用方法 ,并对工程实例进行辨识 。Particle swarm (PS) optimization is a computational technique. It has roots in artificial life and social psychology as well as in engineering and computer science. This paper introduces PS algorithm, which is quite immune to local optima and is fairly efficient in solving problems with complex hyperspace into the field of electrical load parameter identification. This application involves a suitable neighborhood distribution that assures the better global searching ability of PS algorithm. The convergent efficiency and searching ability of PS algorithm, genetic algorithm (GA) and evolutionary strategy (ES) are compared. That leads to the conclusion that PS algorithm is more efficient than GA and ES in load parameter identification. The effect of an important parameter w on deciding the searching ability in PS algorithm is discussed and the best w that fits for the problem of load parameter identification is presented. The method of parameter limits definition and its effect in the algorithm is also discussed. The expected result is obtained when PS algorithm with optimal w is applied to the field data.
关 键 词:电力系统 负荷模型 参数辨识 粒子群优化法 基因算法 遗传算法
分 类 号:TM714[电气工程—电力系统及自动化] O242.23[理学—计算数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.189