检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《吉首大学学报》1992年第5期12-17,共6页
摘 要:本文的目的是证明如下的定理:设V~(n+p)是拟常曲率黎曼流形,即V的黎曼曲率张量可表为K_(ABCD)+a(g_(AC)g_(BD)-g_(AD)g_(BC))+b(g_(AC)V_BV_D+g_(BD)V_AV_C-g_(AD)V_(BC)-g_(BC)V_AV_D)(sum from n=(A,B)(g_(AB)V_AV_B=1),若M~n是V~(n+p)的具有平行平均曲率的紧,致无边子流形,则integral from n=M~n({(2-1/p)S~2-[na+(1/2)(b-|b|)(n+1)]S+n(n-1)b~2+nH(anH+S~(3/2)+2|b|S~(1/2))}*1≥0)式中S=const是M~n的第二基本形式的长度之平方,H=const是M~n的中曲率.当M~n是V~(n+p)的极小子流形时(H=0)。In this paper , we have established the following result , Theorem Let Vn+p be an n+p-dimensional Riemannian manifold with quasi constant curvature, that is Riemannian curvature tensor of Vn+p. KABCD = a (gACgBD - gADgBC) + b (gAC VBVD + gBD VBVC-gBC VAVD) (Where a and b are arbitrary functions on Vn+p,VAis a arbitrary unit vector field, and (?) VAVB=1), If Mn is a compact submanifold with parallel mean curvature in a Riemannian manifold with quasi constant curvature , then Where S1/2 is the length of the second fundamental form of Mn. When Mn is a minimal submanifold of Vn+p, we have obtained that integral inequality in[1].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.169.79