检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马则一
机构地区:[1]北京信息工程学院,100101
出 处:《计算物理》1992年第2期192-196,共5页Chinese Journal of Computational Physics
摘 要:本文从二维非线性Schr(?)inger方程出发,推导出五对角的复代数方程组,并应用高斯—赛德尔迭代法、SOR迭代法、复双共轭梯度法以及预处理复双共轭梯度法等对求解的计算量进行了比较。同时,又将复代数方程组化成七对角的实代数方程组,用高斯—赛德尔迭代法、SOR迭代法以及PCG法(预处理共轭梯度法)等进行了比较。结果表明,PCG法在上述几种方法中是最有效的。本文还对SOR松弛因子的选择进行了讨论。From the 2 - D nonlinear Schrodinger equation, a complex algebraic equation system is obtained. This paper uses Gauss -Seidel, SOR, Complex BI -CG and complex BI -PCG to solve the system and compares the total costs of iterations of these iterative methods. Meanwhile, the complex equation system is also transformed into a real system whose coefficient matrix is hepta -diagonal. Gauss-Seidel, SOR and PCG methods are then used to solve it and the total costs of iterations are also compared. The result shows that the PCG method is most effective comparing with the others. It is discussed as well that how to select the optimal relaxation factor of SOR method for the systems considered.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52