检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安阳大学基础部,安阳455000
出 处:《数学的实践与认识》2003年第6期47-54,共8页Mathematics in Practice and Theory
摘 要:本文提出应用小参数法 ,探讨 Markov链中相邻两次更新时刻内稀疏事件的概率估计问题 .建立了三种最重要的具有更新时间的概率模型 .通过小参数的引入和对概率式的幂展开 ,进而推证出幂渐近展开系数的模型估算法 .论证了无偏估计的重要定理 ,给出了概率估计式和无偏估计精度 .In this paper presented utilization of the method of small parameters, in order to that inquire into probable estimate the question of sparse ineident in near neighbor two renewal times in Markov Chain. And built three types better vital probable models with renewable time. And through the introduction of the small parameters and the unfold of power for the probable formulas, and then a model estimation-mothod of gradual spread coefficient with form of power is proved. And also proved important theorems about estimate of without deviation. And the probable calculated formulas and the estimate precision of without deviation are given. And some algorithms extend to the arbirary space of a state.
关 键 词:更新时间 概率模型 无偏估计 小参数法 MARKOV链 稀疏事件 误差分析 幂渐近展开
分 类 号:O211.9[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.49.32