短期负荷预测相空间重构法参数优选的数值测试与分析  被引量:37

IMPROVING PRECISION OF SHORT TERM LOAD FORECASTING BY NUMERICAL TESTING IN LOCAL LINEARIZATION METHOD OF PHASE SPACE RECONSTRUCTION

在线阅读下载全文

作  者:杨正瓴[1] 林孔元[1] 

机构地区:[1]天津大学自动化学院,天津市300072

出  处:《电力系统自动化》2003年第16期40-44,共5页Automation of Electric Power Systems

摘  要:采用混沌方法中相空间重构法的局部线性法进行短期负荷预测时 ,需要优选 3个参数 ,即负荷记录序列的延时时间、嵌入相空间的维数以及选择邻近点时使用的距离。数值测试表明 ,按混沌理论优选的延时时间和嵌入相空间的维数一般不是负荷预测的最适合参数。这 2个参数的取值和搭配对预测误差的影响最大 ,其次才是选择邻近点时使用的距离。这是由于负荷记录不是严格混沌的 ,而是以双周期为主。对测试结果的分析表明 ,优选的延时时间 ,在离线预测时可以选择使负荷记录中的双周期成分延时相轨迹出现最小重叠的延时时间 ;在线预测时是使负荷取样序列具有最小方差。此外 ,还确认采用负荷记录的“平衡点 +混沌”Three parameters, which are the delay time of load record series, embedded space dimension and distance in choosing the neighboring points, need to be determined in forecasting short term loads by the local linearization method of phase space reconstruction. Numerical simulation test shows that the delay time and embedded space dimension given by chaos theory usually are not the best ones for load forecasting. Their combination is the most important factor to reduce the load forecasting errors, and the distance is the secondary factor. The reason is that the load records are not rigorously chaotic but chiefly double periodical. Analyses show that. (1) in off-line forecasting the best delay time corresponds to that makes the minimal superposition in phase space trajectories of the double periodical component, (2) in on-line forecasting the best delay time corresponds to that makes the minimal standard deviation of the new series sampled from the load records. Furthermore, it is shown that splitting the load records series into equilibrium point + chaos can usually reduce the forecasting errors.

关 键 词:负荷预测 混沌 相空间重构 局部线性法 延时相轨迹 

分 类 号:TM715[电气工程—电力系统及自动化] O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象