检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛建中[1] 闫相国[1] 郑崇勋[1] 王浩军[1]
机构地区:[1]西安交通大学生物医学工程研究所,西安710049
出 处:《生物物理学报》2003年第3期322-326,共5页Acta Biophysica Sinica
基 金:国家自然科学基金项目(30170257)
摘 要:根据支持向量机的基本原理,给出一种推广误差上界估计判据,并利用该判据进行最优核参数的自动选取。对三种不同意识任务的脑电信号进行多变量自回归模型参数估计,作为意识任务的特征向量,利用支持向量机进行训练和分类测试。分类结果表明,优化核参数的支持向量机分类器取得了最佳的分类效果,分类正确率明显高于径向基函数神经网络。The fundamental of support vector machine (SVM) based on structure risk minimization was introduced. An estimation formula of upper bound of generalization error was given, and the optimal kernel-parameter of the SVM was selected automatically by the formula. The feature vectors were extract-ed from six-channel electroencephalograph (EEG) data segments of four subjects under three mental tasks by the mean of a multivariate autoregressive (MVAR) model method. These vectors were considered as the inputs of classifiers to test classification accuracies for three task pairs. Average classification accura-cies indicated that the optimal kernel-parameter method could get optimal results, and was significantly better than that of Radial Basis Function (RBF) network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74