检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东理工大学交通与车辆工程学院,山东济南250014 [2]吉林大学交通学院,吉林长春130025
出 处:《吉林大学学报(工学版)》2003年第4期79-84,共6页Journal of Jilin University:Engineering and Technology Edition
摘 要:以标准BP算法为基础,应用Levenberg Marquardt最优化方法,提出了一种快速收敛的BP算法———LMBP算法。经实验验证并与标准BP算法及其它改进形式比较,LMBP算法大大提高了收敛速度,而且性能稳定。这为BP神经网络应用于实时性要求高的场合(如在线检测)提供了算法基础。该算法的缺点是计算量大,所需计算机内存大,不适合大型网络的计算。A new kind of BP algorithmLMBP that converges very fast is proposed in this paper by using LevenbergMarquardt optimization method and standard BP algorithm.The experimental results prove that LMBP converges very rapidly and has good stability property compared with that of the standard BP algorithm and other improved ones.LMBP algorithm is suitable for the case with high demands of online computation,e.g.online measurement.But when the size of neural network increases, it needs enormous calculation and large computer memory space.
关 键 词:神经网络 LMBP算法 Levenberg—Marquardt最优化方法
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42