检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨商业大学基础科学系,黑龙江哈尔滨150076
出 处:《黑龙江大学自然科学学报》2003年第3期34-35,共2页Journal of Natural Science of Heilongjiang University
基 金:黑龙江省自然科学基金资助项目(A9818);黑龙江省教育厅科研项目(9543007)
摘 要:设R为结合环。文献[3]证明了:设R是具有正则元的半质环,如果R满足条件:对于任意的x,y∈R,都存在一个与x,y有关的整数n=n(x,y)≥1,使得(xy)n+k=xn+kyn+k,k=0,1,2,则R为交换环。给出上述结果的一个简短证明,并将其推广,证明了定理:设R是具有正则元的半质环,如果R满足条件:对于任意的x,y∈R,都存在一个与x,y有关的整数n=n(x,y)≥1,使得(xy)n+k=yn+kxn+k,k=0,1,2,则R为交换环。Let R be an associative ring. The paper [1] gives the following result: Let R be a semi-prime ring with normal element, if R satisfies the condition: For Vx, y∈R, there is an integer n = n(x, y)≥1, related to x, y such that (xy)n+k = xn+kyn+k, k = 0, 1, 2, then R is commutative. An easier proof is presented of the above results. The results of the paper [1] are extened, the theorem is proved: Let R be a semi -prime ring with normal elements, if R satisfies the condition: For Vx, y∈R, there is an integer n = n(x, y)≥1, related to x, y, such that (xy)n+k = yn+kxn+k, k = 0, 1, 2, then R is commutative.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117