检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2003年第32期111-115,共5页Computer Engineering and Applications
摘 要:多机器人环境中的学习,由于机器人所处的环境是连续状态,连续动作,而且包含多个机器人,因此学习空间巨大,直接应用Q学习算法难以获得满意的结果。文章研究中针对多智能体机器人系统的学习问题,提出自适应模糊RBF神经网络强化学习算法,网络本身具有模糊推理能力、较强的函数逼近能力以及泛化能力,因此,实现了人类专家知识与机器学习方法的结合,减少学习问题的复杂度;实现连续状态空间与动作空间的策略学习。The learning in the multi-robots undertaking the team task in the dynamic enviroment is studied.Since the enviroment state and action is continous,and involing multi-robots,the learning space is huge,in finite state spaces,it is impossible to exactly store the optimal Q value function with lookup table representations,so it is difficult to use Q-learning directly.This thesis puts forward a reinforcement learning on the basis of adapted fuzzy RBF neural network with Q-learning to mapping from the state space to the action space.This method can build an ANFIS according to ex-perts' knowledge,and be able to adjust parameters of the system's antecedents and consequents in a self-adapt way.So it can establish a correct map to describe the cooperation among the robots.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28