检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学电气工程学院系统科学与工程学系,浙江杭州310027
出 处:《控制理论与应用》2003年第6期897-902,共6页Control Theory & Applications
摘 要:递归多层感知器(RMLP)在工程上应用比较多,但对其稳定性的研究还比较少.本文提出一种新的神经网络模型———标准神经网络模型(SNNM),通过状态空间扩展法,将RMLP转化为SNNM,而SNNM的稳定性分析可转化为一组线性矩阵不等式(LMI)的求解,利用Matlab/LMIToolbox求解LMI,从而判定RMLP的Lyapunov稳定性,并考虑非零阈值对稳定性的影响.该方法也适用于其他类型的递归神经网络(RNN)的稳定性分析.Recurrent multilayer perceptrons (RMLPs) were widely applied to the industrial processes, but stability analysis of RMLPs was seldom researched at present. A novel neural network model named as standard neural network model (SNNM) was advanced. By applying the state space extension method, RMLPs were converted to the SNNMs. Stability conditions of the SNNMs were transformed into some linear matrix inequalities (LMIs). LMIs were solved by Matlab/LMI Toolbox to determine whether RMLPs were Lyapunov stable or not. And the effect of nonzero biased in RMLPs on stability was taken into account. The proposed approach can also be applied to other forms of recurrent neural networks (RNNs).
关 键 词:递归多层感知器 稳定性分析 LMI方法 状态空间扩展法 线性矩阵不等式 标准神经网络模型
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3