两相复合介质内部电场及宏观介电常数的三维模拟  被引量:1

3-Dimensional Simulation of the Interior Electric Field and Macro Dielectric Constant of a Two-Phased Composite Material

在线阅读下载全文

作  者:王国庆[1] 吴顺华[1] 赵玉双[1] 张志萍[1] 

机构地区:[1]天津大学电子信息工程学院先进陶瓷与加工技术教育部重点实验室(天津大学),天津300072

出  处:《无机材料学报》2004年第1期214-222,共9页Journal of Inorganic Materials

摘  要:建立三维模型,用蒙特卡洛有限元法对两相复合介质的内部电场分布进行模拟,并由此计算出介质的宏观介电常数εm.发现由三维模型计算出的低介相中的电场能量占总能量的比例高于二维模型.三维模型符合实际复合介质中微粒间并联程度大于串联程度的事实,因此由三维模型得出的电场分布和εm值比二维模型更加精确.得出了新的两相复合介质宏观介电常数预测公式:,其中α=(V12+20V1V2+5V22)/11,V1+V2=1,ε1<ε2.该公式与若干文献中的实验结果相吻合.The interior electric field of a two-phased composite material was simulated by using Monte Carlo and finite element methods with 3-dimensional model, from which the macro dielectric constant, epsilon(m), of the material was calculated. The results show that the percentage of electric field energy stored in the low-permittivity phase to total energy calculated with 3-dimensional model is larger than that calculated with 2-dimensional model. Since the 3-dimensional model accords with the fact that the particles in real composite material are more parallel than serial connected, the simulated distribution of the electric field and with 3-dimensional model are more accurate than with 2-dimensional model. A new equation for predicting the macro dielectric constant of a two-phased compound derivedis: epsilon(m)(alpha) = V(1)epsilon(1)(alpha) + V(2)epsilon(2)(alpha), where alpha = (V-1(2) +20V(1)V(2) +20V(1)V(2) +5V(2)(2))/11, V-1 + V-2 = 1 and epsilon(1) < epsilon(2). This equation agrees well with the data from some literatures.

关 键 词:复合介质 蒙特卡洛法 有限元法 混合定律 

分 类 号:TM28[一般工业技术—材料科学与工程] TQ174[电气工程—电工理论与新技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象