检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海东[1]
机构地区:[1]重庆邮电学院,重庆400065
出 处:《重庆邮电学院学报(自然科学版)》2004年第1期103-104,共2页Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
摘 要:Chaki引入了非平坦黎曼流形(Mn,g)(n≥2),并称之为伪Ricci对称流形,记为(PRS)n,在此基础上Chaki和Koley定义了一类非平坦黎曼流形,并称为广义伪Ricci对称流形,记为G(PRS)n。讨论了广义Ricci对称Sasakian流形,证明了如果向量场ρ,λ和μ中任意2个正交于ξ,则第3个也正交于ξ。另外计算了广义伪Ricci对称Sasakian流形的数量曲率的值。Chaki introduced a kind of non-smooth Riemannian manifold (M^n,g)(n≥2) which is named as pseudo Ricci symmetric manifold and symbolized as (PRS)_n on this foundation,Chaki and Koley define another kind of non-smooth Riemannian manifold which is named as generalized pseudo Ricci symmetric manifold and symbolized as G(PRS)_n.In this paper, the generalized pseudo Ricci symmetric Sasakian manifold is discussed .It is testified that if the random two between the vector fields ρ,λ and μ are orthogonat to the vector field ξ and then the third vector field is orthogonat to the vector field ξ.In addition ,the value of the scalar curvature of the generalized pseudo Ricci symmetric Sasakian manifold is workout.
关 键 词:广义伪Ricci对称 SASAKIAN流形 数量曲率
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49