广义伪Ricci对称Sasakian流形  

Generalized pseudo Ricci symmetric Sasakian manifolds

在线阅读下载全文

作  者:王海东[1] 

机构地区:[1]重庆邮电学院,重庆400065

出  处:《重庆邮电学院学报(自然科学版)》2004年第1期103-104,共2页Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)

摘  要:Chaki引入了非平坦黎曼流形(Mn,g)(n≥2),并称之为伪Ricci对称流形,记为(PRS)n,在此基础上Chaki和Koley定义了一类非平坦黎曼流形,并称为广义伪Ricci对称流形,记为G(PRS)n。讨论了广义Ricci对称Sasakian流形,证明了如果向量场ρ,λ和μ中任意2个正交于ξ,则第3个也正交于ξ。另外计算了广义伪Ricci对称Sasakian流形的数量曲率的值。Chaki introduced a kind of non-smooth Riemannian manifold (M^n,g)(n≥2) which is named as pseudo Ricci symmetric manifold and symbolized as (PRS)_n on this foundation,Chaki and Koley define another kind of non-smooth Riemannian manifold which is named as generalized pseudo Ricci symmetric manifold and symbolized as G(PRS)_n.In this paper, the generalized pseudo Ricci symmetric Sasakian manifold is discussed .It is testified that if the random two between the vector fields ρ,λ and μ are orthogonat to the vector field ξ and then the third vector field is orthogonat to the vector field ξ.In addition ,the value of the scalar curvature of the generalized pseudo Ricci symmetric Sasakian manifold is workout.

关 键 词:广义伪Ricci对称 SASAKIAN流形 数量曲率 

分 类 号:O186.16[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象