检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2004年第1期23-26,共4页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(60175011);安徽省自然科学基金资助项目(01042301)
摘 要:支持向量机是一种能在训练样本数很少的情况下达到很好分类推广能力的学习算法,文中研究了支持向量机的分类机理,并将其应用于形状识别中,利用一对一判别策略构建了多类形状识别系统,实验中以交通标志图像为实验对象进行分类,结果表明该方法的泛化能力优于一般的识别方法。Support Vector Machine (SVM) is a new learning method that has good generalization ability as training examples are limited. After the classification mechanism of SVM is analyzed, a multi-class shape recognition system based on SVM is proposed here, which uses one-against-one method in the test phase. The results of experiment show the advantage of this method.
关 键 词:支持向量机 多类形状识别系统 学习算法 结构风险最小化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

