基于小波包分解和支持向量机的机械故障诊断方法  被引量:25

METHOD OF MACHINERY FAULT DIAGNOSIS BASED ON WAVELET PACKET DECOMPOSITION AND SUPPORT VECTOR MACHINE

在线阅读下载全文

作  者:何学文[1] 卜英勇[1] 

机构地区:[1]中南大学机电工程学院,长沙410083

出  处:《机械强度》2004年第1期20-24,共5页Journal of Mechanical Strength

摘  要:提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量 ,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明 ,与神经网络相比 ,采用支持向量机进行故障诊断可以获得更高的诊断精度 ,表明该方法是有效的、可行的。Since there are some problems in machinery fault diagnosis, such as difficulty in getting adequate fault data samples, extracting feature vectors and acquiring fault diagnosis knowledge, a novel method of machinery fault diagnosis based on wavelet packet decomposition and support vector machine is proposed. According to the method, the energy of different frequency bands after wavelet packet decomposition constitutes the input vectors of support vector machine as feature vectors. And these feature vectors are inputted into multiple fault classifiers to identify faults. The new method, by which multiple faults can be diagnosed, only requires a small quantity of fault data samples and doesn't know the empirical knowledge of fault diagnosis. Compared with artificial neural networks(ANN),the method can achieve excellent diagnosis accuracy, and the results prove the method is efficient and feasible.

关 键 词:小波包分解 能量谱 支持向量机 故障诊断 多故障分类器 机械故 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象