逐级均值聚类算法的RBFN模型在负荷预测中的应用  被引量:42

APPLICATION OF RBFN MODEL FOR LOAD FORECASTING BASED ON RANKING MEANS CLUSTERING

在线阅读下载全文

作  者:刘小华[1] 刘沛[1] 张步涵[1] 万建平[1] 

机构地区:[1]华中科技大学,湖北武汉430074

出  处:《中国电机工程学报》2004年第2期17-21,共5页Proceedings of the CSEE

基  金:国家自然科学基金项目(50177011)~~

摘  要:该文针对传统K均值聚类算法的不足,提出了一种新的聚类算法——逐级均值聚类算法,解决了传统聚类算法解的局部最优性问题和如何确定聚类数目的问题。在应用该算法确定RBF模型隐含层的中心向量时,同时确定了隐含层的节点数和RBF网络模型的结构。对于网络参数的确定,文中也提出了一种新的交互式的学习方案,将学习样本分为训练样本和测试样本,分别对网络进行权值确定和半径调节,得到了非常稳定的网络结构。运用文中所述模型及算法与传统的RBFN进行负荷预测比较,结果表明前者网络更稳定,预测精度更高。A novel clustering method 鈥?Ranking Means Cluster is proposed in this paper. This method is able to avoid local optimal solution with traditional AT-means cluster algorithm and it can also decide the number of clusters to be classified into. With our algorithm, the central vectors of hidden layers in RBF models can be computed and the nodes number and RBF infrastructure can also be decided. Moreover, a new interactive learning scheme is proposed in this paper to choose network parameters. The learning samples are categorized into training samples and testing samples, which lead to stable network structure by adjusting the power values and radius. Comparison of the proposed algorithm with traditional RBFN in power load prediction shows that the former method is more stable and produces more accurate prediction results.

关 键 词:电力系统 负荷预测 RBFN模型 逐级均值聚类算法 非线性函数 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象