检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学信息科学技术学院自动控制系,北京100081
出 处:《北京理工大学学报》2004年第1期64-68,共5页Transactions of Beijing Institute of Technology
基 金:辽宁省自然科学基金资助项目(002013)
摘 要:为了研究具有大量高度相关的过程变量的非线性系统的故障诊断问题,提高用于故障检测和诊断的PCA模型的精度,提出一种基于多PCA模型的方法.设计的基于超椭球面的分类规则用来对过程数据分类,建立的多PCA模型用于过程监测,SOFM网络用于故障诊断.发酵过程中的仿真结果表明,多PCA模型方法能确定合理的受控限,提高了过程监测的精度,验证了方法的可行性和有效性.In order to solve the problem of fault diagnosis for nonlinear systems with correlative process variables and improve the precision of PCA models for fault detection and fault diagnosis, a fault diagnosis method based on multi-PCA models is presented. Hyper-ellipsoid bound clustering rules are adopted to classify the process data, multi-PCA models are then built up for process monitoring. SOFM network is used in fault diagnosis. Simulation results in fermentation process show that the method can give reasonable control limits and improve the precision in process monitoring, which illustrates the feasibility and effectiveness of the proposed method.
关 键 词:过程监测 故障诊断 主元分析 SOFM网络 发酵过程
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.249.140