检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微电子学与计算机》2004年第2期58-62,共5页Microelectronics & Computer
基 金:国家973预研项目(2001CCA03000);中国人民大学"211"重点项目
摘 要:文章提出稀疏矩阵划分的思想,对资源评分矩阵进行划分,缩小近邻搜索的范围和需要预测的资源数目,减少数据稀疏性,提高了个性化推荐算法的可扩展性。另外,分别讨论了采取分类和聚类的方法对稀疏矩阵进行划分。实验结果表明:基于稀疏矩阵划分的个性化推荐算法在算法性能上优于传统协同过滤算法。In this paper,we propose a personalized recommendation method based on sparse matrix partition.In our ap-proach,the user-item rating matrix can be partitioned into low-dimensional dense matrices using classification methods or clustering methods.The recommendations are generated based on low-dimensional matrices.Moreover,compared traditional collaborative filtering method,the experimental results show the effectiveness and efficiency of our approach.
关 键 词:个性化推荐算法 稀疏矩阵划分 聚类算法 用户兴趣模型
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33