检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京财经大学电子商务实验室,南京210003 [2]复旦大学计算机与信息技术系,上海200433
出 处:《计算机研究与发展》2004年第3期477-484,共8页Journal of Computer Research and Development
基 金:国家"八六三"高技术研究发展计划基金项目 ( 2 0 0 1AA113 181) ;上海市科学技术发展基金项目 ( 0 15 115 0 10 ) ;信息产业部科研试制计划基金项目 ( 0 1XK3 10 0 12 )
摘 要:异常检测是数据挖掘领域研究的最基本的问题之一 ,它在欺诈甄别、贷款审批、气象预报、客户分类等方面有广泛的应用 以前的异常检测算法只适应于静态环境 ,在数据更新时需要进行重新计算 在基于密度的局部异常检测算法LOF的基础上 ,提出一种在动态环境下局部异常挖掘的增量算法IncLOF ,当数据库中的数据更新时 ,只对受到影响的点进行重新计算 ,这样可以大大提高异常的挖掘速度 实验表明 ,在动态环境下IncLOF的运行时间远远小于LOF的运行时间 ,并且用户定义的邻域中的最小对象个数与记录数之比越小 。Outlier detection is an important branch in the area of data mining It has been widely applied in fraud detection, loan approval, weather prediction and customer segmentation The former algorithms for outlier detection are only applied in static environment So recalculation is needed when updates occur In this paper, the first incremental outlier mining algorithm IncLOF is presented in dynamic environment based on LOF which is an algorithm for identifying density based local outliers IncLOF only recalculates a fraction of data affected by insertion or deletion, so it can greatly speed up outlier mining The results from a study on synthetic data sets demonstrate that the runtime of IncLOF is much less than LOF in dynamic environment, especially when the ratios of MinPts to database size are small
关 键 词:数据挖掘 异常检测 局部异常因子 局部可达密度 增量挖掘算法
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222