检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电信技术研究》2004年第3期15-19,共5页Research on telecommunication technology
摘 要:将支持向量机(SVM)引入自动语种识别领域,并在其基础上提出一种改进的SVM——K-近邻支持向量机(KNN-SVM):先利用KNN对训练集进行筛选,对每个样本求得它的K近邻,由目标样本与它的K近邻的类标的异同,决定其取舍,然后再用SVM来训练分类器。该方法有助于降低噪声干扰及不同语言的语音特征相互混杂的影响,简化SVM的决策面,尽量避免SVM发生过匹配。利用OGI-TS数据库对新算法的性能进行了测试。实验结果表明,该算法相对于传统语种识别方法和SVM算法,在分类正确率、分类速度上表现出了一定的优越性并且适用于大规模样本集的训练。
关 键 词:支持向量机 K-近邻 自动语种识别 线性预测倒谱系数
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15