检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学理学院,西安710049 [2]西安交通大学系统工程研究所,西安710049
出 处:《自动化学报》2004年第2期283-287,共5页Acta Automatica Sinica
基 金:国家"863"计划资助项目(863-51-945-011);国家自然科学基金资助项目(60274055);西安交通大学自然科学基金资助项目(0900-573024)
摘 要:为避免反传学习(BP)算法易于落入局部极小点,该文提出一种基于新填充函数的小波神经网络全局优化学习算法,用来解决连铸连轧过程的产品质量建模问题.该过程很复杂,影响其产品性能的因素很多,物理模型难以建立.该文以小波神经网络为模型,建立连铸连轧产品质量与其化学成分和轧制参数之间的复杂非线性模型.该模型用来对板材产品的断裂延伸率、屈服强度等质量性能指标进行预测.数值实验表明:所建立的模型拟合与校验命中率较高,能够较好地预测产品的物理性能.To avoid local minimum solutions in the back propagation learning, a new global optimization algorithm based on filled function is proposed to model the product quality of continuous casting furnace and hot rolling mill. The industrial process is very complicated and the number of parameters which determine the final properties can be quite large. It is extremely difficult to develop a physical model for predicting various properties like elongation and yield and tensile strengths. In the present work, a wavelet neural network has been employed to develop a quantitative method for estimating the elongation and yield and tensile strengths as a function of steel composition and rolling parameters. Experimental studies demonstrate that the predicted mechanical proper- ties have a good agreement with the measured data by using the developed wavelet network model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.235