检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董火明[1] 高隽[2] 胡良梅[2] 王安东[1]
机构地区:[1]合肥工业大学计算机与信息学院图像信息处理研究室合肥230009 [2]中国科学院合肥智能机械研究所合肥230031
出 处:《模式识别与人工智能》2004年第1期87-93,共7页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.60175011;60375011);安徽省自然科学基金(No.01042301);安徽省优秀青年科技基金(No.04042044)
摘 要:指纹识别是生物特征识别技术中的热点。指纹特征可分为全局特征与细节特征,现有主流指纹识别方法是基于细节特征的识别,但是指纹全局特征识别具有明显的优势,更加符合人类识别机理。本文尝试采用PCA网络提取指纹的全局特征——主分量特征,理论分析与实验说明了指纹主分量特征是有效的,鲁棒性较好。在识别方法上,采用协同模式识别方法,该方法注重模式的整体信息,并将其与PCA网络特征提取层有机的结合,对FVC2002指纹库的实验表明,本文的指纹全局特征识别方法预处理与特征提取简单,识别速度快,鲁棒性较好,取得了良好的指纹识别与身份认证效果。Fingerprint recognition is one of the research hotspots of biometrics techniques. Generally, there are two kinds of features in person's fingerprints: global features and minutiae features. And the leading fingerprint recognition methods are based on minutiae features of fingerprints. But fingerprint global feature recognition has some obvious advantages, and it is similar to human recognition mechanism. PCA neural network is adopted to extract global features of fingerprint images in this paper. We analyze and testify that fingerprint principal components features are effective and robust. A novel and effective synergetic pattern recognition approach is adopted in the recognition layer, which emphasizes global information of patterns and combines with PCA neural network very well. With FVC2002 fingerprint database, experiment results show that the purposed method is simple, fast and robust.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

