大型干坞边坡变形及其神经网络预测模型  被引量:3

Artificial Neural Network Forecast Model for Slope Deformation of Large-Scale Dry-Dock

在线阅读下载全文

作  者:关秦川[1] 张志勇 冯浩[3] 

机构地区:[1]西南交通大学招生就业处,四川成都610031 [2]上海城建(集团)公司,上海200023 [3]西南交通大学计算机与通信工程学院,四川成都610031

出  处:《西南交通大学学报》2004年第2期157-161,共5页Journal of Southwest Jiaotong University

摘  要:分析了影响干坞边坡变形的因素,包括土体强度、无护坡时间、放坡坡率、分层开挖数、分层开挖深度、开挖步长、降水深度和坡顶荷载.在此基础上并结合典型实测数据,建立了干坞边坡变形的神经网络预测模型,预测结果与实测结果一致.此外,还提出了放坡开挖边坡变形的警戒值、边坡变形判断模式及相应的控制措施.Factors influencing the deformation of a dry-dock slope were analyzed. They are soil mass strength, time of non-protection slope, gradient of slope, number of layout excavation, depth of layout excavation, excavation step, rainfall depth and load on slope top. Based on the above and the typical deformation data measured in-situ, an artificial neural network model of predicting the deformation of a dry-dock slope was proposed, and the prediction result is consistent with the measured in-situ result. In addition, the vigilance values for slope deformation for the expanding slope technology, the four judgement modes for slope deformation and their corresponding control measures were put forward.

关 键 词:干坞 边坡变形 神经网络 

分 类 号:TU457[建筑科学—岩土工程] TP183[建筑科学—土工工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象