检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南昌航空工业学院测试与控制工程系,南昌330034
出 处:《中国图象图形学报(A辑)》2004年第2期207-213,共7页Journal of Image and Graphics
基 金:江西省自然科学基金 ( 0 2 110 17);江西省测控研究中心开放基金 ( 2 0 0 10 12 )
摘 要:提出一种基于局部进化的 Hopfield神经网络优化计算方法 ,该方法将遗传算法和 Hopfield神经网络结合在一起 ,克服了 Hopfield神经网络易收敛到局部最优值的缺点 ,以及遗传算法收敛速度慢的缺点。该方法首先由Hopfield神经网络进行状态方程的迭代计算降低网络能量 ,收敛后的 Hopfield神经网络在局部范围内进行遗传算法寻优 ,以跳出可能的局部最优值陷阱 ,再由 Hopfield神经网络进一步迭代优化。这种局部进化的 Hopfield神经网络优化计算方法尤其适合于大规模的优化问题 ,对图像分割问题和规模较大的 2 0 0城市旅行商问题的优化计算结果表明 。A novel optimization method using partially evolved Hopfield neural network is proposed in this paper. The method uses Hopfield neural networks and a genetic algorithm on a local area of Hopfield neural networks to compensate each other for defects. The defect of the Hopfield neural network is captured by locally optimal solutions. The defect of genetic algorithms is the lower convergence speed when it optimizes large scale problems. In the proposed method, the Hopfield neural network and a genetic algorithm are used alternately. Solutions obtained with the converged Hopfield neural network are applied to the genetic algorithm to escape from locally optimal solutions. The genetic algorithm is only carried out on some local areas of Hopfield neural network so as to effectively save the computational consumption. The method is evaluated by investigating two large scale optimization problems: image segmentation and 200 cities TSP problem. Experiments show that the local minima of large scale networks can be greatly improved by the partially evolved Hopfield network and the convergence speed is obviously enhanced.
关 键 词:遗传算法 HOPFIELD网络 优化计算 旅行商问题 神经网络 图像处理
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4