检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北大学
出 处:《纯粹数学与应用数学》1992年第1期1-6,共6页Pure and Applied Mathematics
摘 要:一、引言人们容易证明任意3个整数中必有两个整数之和为2整除,任意5个整数中必有3个整数之和为3整除,柯老和孙琦教授在[1]中证明了任意7个整数中必有4个整数之和为4整除,并猜测任意2n-1(n>1)个整数中必有n个整数之和能为n整除。Ke Zhao and Sun Qi ever conjectured that for any 2n-1 (n>1) integers inwhich there exist certainly n integers whose sum is divided by n. The conjecture provedby Shan Zhen in 1982. In this paper, we have generalized this conjecture to the scope ofalgebraic integers contained in any one algebraic number field.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.218.204