混沌噪声背景下弱谐波信号的GRNN检测  被引量:5

Generalization regression neural network method for detecting weak harmonic signal under background of noisy chaos

在线阅读下载全文

作  者:林红波[1] 祁放[1] 邓小英[1] 李月[1] 

机构地区:[1]吉林大学通信工程学院,吉林长春130012

出  处:《吉林大学学报(信息科学版)》2004年第3期209-213,共5页Journal of Jilin University(Information Science Edition)

基  金:国家自然科学基金资助项目(40374045);吉林省科技发展计划资助项目(20020626)

摘  要:针对BP(BackPropagation)神经网络方法存在训练时间长,收敛性能不理想;RBF(RadialBasisFunction)神经网络的隐层结构对鲁棒性影响大的问题,将广义回归神经网络GRNN(GeneralizationRegressionNeuralNetwork)引入混沌背景下的弱谐波信号检测中,提出了一种提取混沌噪声背景下微弱谐波信号的GRNN检测方法。该方法利用GRNN建立噪声混沌背景的最优一步预测模型,再结合频域处理预测误差提取微弱信号,以Duffing系统产生混沌时序作为混沌背景,使用该方法用MATLAB6.1验证在没有噪声、存在高斯白噪声和存在色噪声情况下的混沌背景下的弱谐波信号检测。实验结果表明,谐波对混沌的信噪比达到-36dB时仍然可以检测出谐波。Aiming at the problems that BP(Back Propagation) network which needs long training time and weak astringency, and that the robustness of RBF(Radial Basis Function) neural network is susceptible to the structure of hidden layer, the GRNN(Generalization Regression Neural Network) method is presented to detect weak harmonic signal under the noisy chaotic background. In this method, GRNN is used to build one-step predictive model for chaos background first, and then the frequency way is combined to process predictive error for detection of the weak harmonic signal. The chaotic series of Duffing equation is utilized as chaotic background to experiment this method under the noiseless background, white noise and colored noise through MATLAB6\^1. The results show that this method can detect weak harmonic signal at SNR(Signal-to-Noise Radio)of harmonic to chaos background up to -36 dB.

关 键 词:混沌 广义回归神经网络 微弱信号检测 重构吸引子 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象