检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐保祥[1]
出 处:《数学的实践与认识》2004年第5期120-125,共6页Mathematics in Practice and Theory
摘 要:利用图论的边着色理论建立了一个赛程安排的数学模型 .首先建立 n支球队与完全图 Kn的 n个顶点间的一一对应 ,把球队 Ai和 Aj间的比赛关系抽象成 Kn的顶点 i和 j间的边 ( i,j) .然后分别构造出了图K2 m- 1和 K2 m的正常 2 m-1边着色 .从而给出了各球队每两场比赛间得到的休整时间最均等 ,休整的间隔场次数达到上限值 n2A mathematical model of the competitive procedure arrangement is designed in this article by using the edge coloring method of graph theory. The correspondence among n apexes one by one between n contingents of teams and complete graph Kn is firstly made. Therefore, the edge (i,j) between the apex I and the apex j of the apexes of Kn is drawn from the competitive relation between Team Ai and Team Aj. Then the normal ″2m-1″ edge coloring for graph K 2m-1 and graph K 2m are respectively constructed. Thus the conclusion is drawn that the time of rest and reorganization between every two matches of each team is most impartial and that the interval number of the match times of rest and reorganization comes to a competitive procedure arrangement plan of the upper limit value n 2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200