检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数理学院,甘肃兰州
出 处:《应用数学进展》2018年第12期1616-1625,共10页Advances in Applied Mathematics
摘 要:为研究时滞神经元系统复杂的动力学行为,本文在eHR神经元系统的基础上引入时滞项,通过分析线性化eHR模型系统在唯一平衡点的特征方程,得出某一临界值,使得超过其值时发生Hopf分岔,小于其值时,系统是渐进稳定的。此外,通过中心流形定理等理论给出了分岔周期解的稳定性和分岔方向。最后,为验证结论给出了部分数值模拟。In order to study the complex dynamic behavior of time-delayed neuron system, the time-delay term is introduced on the basis of eHR neuron system. By analyzing the characteristic equation of the linearized eHR model system at the unique equilibrium point, a critical value is obtained, so that Hopf bifurcation occurs when the value exceeds it, and the system is asymptotically stable when the value is less than it. In addition, the stability and bifurcation direction of the bifurcation periodic solution are given by the central manifold theorem and other theories. Finally, some nu-merical simulations are given to verify the conclusions.
关 键 词:Hindmarsh-Rose神经元模型 HOPF分岔 时滞
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179