检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳师范大学,辽宁 沈阳
出 处:《应用数学进展》2020年第12期2209-2216,共8页Advances in Applied Mathematics
摘 要:针对带有Dirichlet边界条件的二维半线性抛物方程给出二阶中心差分格式,利用Kronecker积写出二维拉普拉斯算子的微分矩阵。进而应用Crank-Nicolson方法进行时间离散,采用Picard迭代求解离散得到的非线性代数方程组。具体实现过程中结合快速离散正弦变换,本文方法的优点是减少了存储量并大幅度降低了计算时间。数值算例验证本文的方法可以更好地捕捉解的爆破现象。In this paper, the second-order finite difference scheme is applied for the numerical solution of the two-dimensional semi-linear parabolic equations with Dirichlet boundary conditions. We construct the differentiation matrix of two-dimensional Laplacian operator by Kronecker product. The time discretization method is chosen as Crank-Nicolson method. In every time level we solve the nonlinear algebraic equations by Picard iteration method. The fast discrete Sine transform is applied in the process of implementation. The major feature of the proposed method is that the memory requirement and CPU time are reduced obviously. Numerical examples show that the proposed method can better capture the blow up phenomenon of the solution.
关 键 词:半线性抛物型方程 有限差分 Crank-Nicolson方法 离散正弦变换 爆破
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.189.49