检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海师范大学,上海
出 处:《应用数学进展》2021年第7期2442-2456,共15页Advances in Applied Mathematics
摘 要:这篇论文主要包括以下两个方面: 首先证明了自治Boissonade 系统弱解的唯一性. 因为自 治Boissonade系统的二次项是uv而不是u2, 所以在证明弱解的唯一性时与一般方法有所差别, 因 此, 本文给出了证明弱解唯一性的具体方法. 最后, 根据一致吸引子存在的充分必要条件证明了非 自治Boissonade 系统的一致吸引子在E 中的存在性。This paper mainly includes the following two aspects: Firstly, we prove the uniqueness of weak solution of autonomous Boissonade system. Because the quadratic term of the autonomous Boissonade system is uv instead of u2, it is different from the general method when proving the uniqueness of weak solution. Therefore, this paper gives a specific method to prove the uniqueness of weak solution. Finally, according to the sufficient and necessary conditions for the existence of uniform attractor, the existence of uniform attractor in E of non-autonomous Boissonade system is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49