检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西财经学院,广西 南宁 [2]广西大学,广西 南宁
出 处:《应用数学进展》2021年第7期2500-2510,共11页Advances in Applied Mathematics
摘 要:Liénard系统在动力系统理论与应用方面是一个非常重要的非线性震荡器模型,大量的国内外学者对其进行了广泛而深刻的研究。当扰动项为零时,系统变为哈密顿系统。关于该系统的阿贝尔积分零点个数研究一直是近年来研究的热点,大量的研究人员都为此展开了激烈的讨论。本文着重考虑含有扰动项的Liénard系统的阿贝尔积分,根据阿贝尔积分生成元的切比雪夫理论,结合多项式符号计算技术证明阿贝尔积分零点个数的上界。The Liénard system is a very important nonlinear oscillator model in dynamic system theory and applications. A large number of domestic and foreign scholars have conducted extensive and in- depth research on it. When the puturbation is zero, the system becomes a Hamiltonian system. The study on the Abel integral zero number of this system has been a hot topic in recent years, there are lot of researchers have launched fierce discussions. This paper focuses on the Abel integral of the Liénard system with a perturbation term. According to the Chebyshev theory of the Abel integral generator and the progressive development formula of the Abel integral, combining with the polynomial symbol calculation technique to prove the upper bound of the number of zero points of the Abel integral.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.115.102