检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《应用数学进展》2022年第12期8988-9003,共16页Advances in Applied Mathematics
摘 要:该文结合定性分析方法和基于首次积分的分析法,探讨了Eckhaus-Kundu方程的孤波解、周期波解,以及上述二种解关于Hamilton系统能量的演化。本文求出了所研方程全部的钟状和扭状孤波解,并提出了新孤波解以及三类周期波解。通过本文的论述,发现了所研方程为什么能产生孤波解和周期波解,实质上是该方程解的振幅对应的Hamilton系统的能量变化起着关键的作用。In the paper, the solitary and periodic wave solutions of the Eckhaus-Kundu equation and their evolutionary relation with Hamilton energy are studied via combining qualitative analysis with an-alytical method on the basis of first integral. All bell-shaped and kink-shaped solitary wave solu-tions of the equation are obtained, and the new solitary wave solutions and three kinds of periodic wave solutions are given. The discussion reveals that the energy of Hamilton system, which takes different values, is the crucial factor for the emergence of solitary and periodic wave solutions to the studied equation, and the Hamilton system is corresponded by the amplitudes of these solutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.163.164