检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学数学科学学院,福建 泉州
出 处:《应用数学进展》2023年第3期1120-1129,共10页Advances in Applied Mathematics
摘 要:本文基于算子分裂方法,提出了求解分数阶Gray-Scott模型的一种高效数值逼近格式。首先采用算子分裂法将原问题分解为线性子问题和非线性子问题:线性子问题采用Crank-Nicolson(CN)格式结合二阶中心差分,建立整体二阶的数值计算格式;非线性子问题采用CN格式结合Rubin-Graves线性化技术,建立线性化求解格式;并给出算法的稳定性和收敛性分析。最后,通过数值算例验证了算法的有效性。In this paper, an efficient numerical approximation algorithm for solving the fractional-order Gray-Scott model is proposed based on the operator splitting method. Firstly, the operator splitting method is used to decompose the original problem into linear and nonlinear subproblems: the lin-ear subproblem adopts the Crank-Nicolson (CN) format combined with the second-order central difference to establish the overall second-order numerical computation format;the nonlinear sub-problem adopts the CN format combined with the Rubin-Graves linearization technique to establish the linearized solution format;and the stability and convergence analysis of the algorithm are given. Finally, the validity of the algorithm is verified by numerical examples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49