检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方日荣
机构地区:[1]上海理工大学理学院,上海
出 处:《应用数学进展》2023年第5期2303-2309,共7页Advances in Applied Mathematics
摘 要:本文基于耦合的Chen-Lee-Liu方程,通过约化得到一类可积非局部的CLL方程,并由可积非局部CLL方程Lax对出发,构造了双边Darboux变换,从而得到零背景下解的表达式。经典的Chen-Lee-Liu (CLL)方程是数学和物理中最重要的可积系统之一,可用于描述光纤中的传播脉冲。目前已经通过Darboux变换法、黎曼–希尔伯特方法、逆散射方法等方法对CLL方程进行求解,得到许多有趣的解。本文从经典耦合的CLL方程扩展到非局部的CLL方程,增添了些与经典CLL方程不同的数学物理性质,具有研究意义。In this paper, we based on the coupled Chen Lee Liu equation and obtained a class of integrable nonlocal CLL equations through a reduction. Starting from the Lax pair of integrable nonlocal CLL equation, a binary l Darboux transformation is constructed to obtain the expression of the solution under zero background. The classic Chen-Lee-Liu (CLL) equation is one of the most important inte-grable systems in mathematics and physics, which can be used to describe the propagation of puls-es in optical fibers. At present, many interesting solutions have been obtained by solving the CLL equation using methods such as Darboux transformation, Riemann Hilbert problem, and inverse scattering problem. This paper extends from the classical coupled CLL equation to the nonlocal CLL equation, adding some mathematical physics properties different from the classical CLL equation, which is of research significance.
关 键 词:Chen-Lee-Liu方程 双边Darboux变化 LAX对
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49