检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学理学院,上海
出 处:《应用数学进展》2024年第3期991-1001,共11页Advances in Applied Mathematics
摘 要:假设是一个跳有界且界限为1的Lévy过程,生成三元组为。在本文中,我们考虑了由Lévy过程驱动的线性自排斥扩散方程,其中,和。这类过程是一类自交互扩散过程。我们研究了当t趋于无穷时解的长时间行为,发现它具有一种循环收敛性,这在此前的研究中尚未有类似的结论。进一步的,当w=0时在连续观测情况下,通过最小二乘法给出了方程参数的估计。我们证明了的估计量具有强相合性,并讨论了它的渐近分布。Let be a Lévy process with jumps bounded by 1 and generating triplet . In this paper, as an attempt we consider the linear self-repelling diffusion driven by a Lévy process, , where and the parameter . This process is similar to a type of self-interacting diffusion process. This paper studies the long time behaviour of the solution as t tends to infinity, and we find that it exhibits a cyclic convergence property, for which similar conclusions have not appeared in previous studies. In addition, when w=0, by using least squares method, we establish the strong consistency of the estimate and discuss its asymptotic distribution under the consecutive observation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.97.0