检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易思梦
出 处:《应用数学进展》2024年第4期1494-1499,共6页Advances in Applied Mathematics
摘 要:1970年,Harary提出了图的线性荫度概念,它指的是把图G的边集分解成边不交的线性森林的最少数目。线性森林是指每个连通分支都是路的森林。本文通过对路和完全图的笛卡尔积图、直积图进行边分解,证明了路和完全图的笛卡尔积图、直积图符合线性荫度猜想,进而证明了路和完全图的乘积图满足线性荫度猜想。In 1970, Haray proposed the concept of linear arboricity of a graph, which refers to decomposing the edge set of graph G into the minimum number of linear forests with non intersecting edges. A linear forest is a forest where each connected component is a path. This article proves that the Cartesian product graph and direct product graph of a path and a complete graph satisfy the linear arboricity conjecture by performing edge decomposition on them. Furthermore, it proves that the strong product graph of a path and a complete graph satisfies the linear arboricity conjecture.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.61.129