检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:欧杨
出 处:《应用数学进展》2024年第6期2930-2942,共13页Advances in Applied Mathematics
摘 要:本文提出了一种求解多目标优化问题的非单调线性加权牛顿算法。在目标函数有下界且梯度Lipschitz连续的条件下证明了算法的全局收敛性。在目标函数满足二次连续可微且局部强凸的条件下,证明了该算法具有局部超线性收敛速度。数值实验结果表明,相比于单调线性加权牛顿算法,该算法能够更加高效地求解多目标优化问题。This paper introduces a nonmonotone linear weighted Newton algorithm for solving multi-objective optimization problems. It is shown that the algorithm achieves global convergence under the assumption of a lower bound on the objective function and a Lipschitz continuous gradient. Furthermore, under the conditions of quadratic continuous differentiability and local strong convexity, the algorithm demonstrates local superlinear convergence. Numerical experiments demonstrate that this algorithm outperforms the monotone linear weighted Newton algorithm in efficiently solving multi-objective optimization problems.
关 键 词:多目标优化问题 非单调线搜索 PARETO最优解 局部超线性收敛
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49