检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津职业技术师范大学理学院,天津
出 处:《应用数学进展》2024年第7期3332-3340,共9页Advances in Applied Mathematics
摘 要:近年来,关于捕食–食饵模型的动力学分析作为一个重要课题,吸引了许多学者的广泛研究。通过对Allee效应的研究,可以发现种群自身适应度与种群自身的生长密度等其他方面的正相关关系。本文从数学和生物学的角度出发,建立了带有Allee效应和具有Holling IV功能反应的捕食者–食饵模型。针对模型,对其有界性、解的性质、平衡点的存在性以及其局部稳定性和分支进行了分析。In recent years, the dynamical analysis of predator-prey models has emerged as a significant topic, garnering extensive research attention from scholars worldwide. Through the study of the Allee effect, it has been observed that there is a positive correlation between a population’s fitness and its growth density, among other factors. This paper constructs a predator-prey model incorporating the Allee effect and featuring the Holling type IV functional response from both mathematical and biological perspectives. The analysis of the model includes its boundedness, the properties of solutions, the existence of equilibrium points, as well as the local stability and Hopf bifurcation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222