检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学数学学院,吉林 长春
出 处:《应用数学进展》2025年第1期63-68,共6页Advances in Applied Mathematics
摘 要:Sheila Sundaram在研究对称群上关于子词序的具有特定秩的子偏序集的同调表示时,得到了一个关于第二类Stirling数的恒等式,并提出如何给出此恒等式的一个组合证明这样一个公开问题。本文旨在给出此恒等式的两个新的证明以及重新构造前人使用的一个反号对合以给出一个对合证明,从而回答了Sundaram提出的问题。此外,我们还给出了此恒等式左侧和式的一个组合解释,这一组合解释源自于Mansour和Munagi的结果。Sheila Sundaram obtained an identity between Stirling numbers of the second kind while studying representations of the symmetric group on the homology of rank-selected subposets of subword order. She posed an open question that how to give a combinatorial proof of this identity. The aim of the paper is to present two new proofs as well as reproduce a sign-reversing involution proof of this curious identity, thereby answering the question posed by Sundaram. Moreover, we also provide a combinatorial interpretation of the left-hand side of this identity which is originally due to Mansour and Munagi.
关 键 词:第二类STIRLING数 集合划分 连续对 反号对合 容斥原理
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120