检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学进展》2025年第1期360-373,共14页Advances in Applied Mathematics
基 金:国家自然科学基金(12161060);广西自然科学基金项目(2023GXN5PAA026204)。
摘 要:本文研究了捕食者具有Michaelis-Menten型离散捕食者–猎物模型的动力学问题。为了探索模型的丰富动力学性质,采用欧拉近似得到离散时间的Leslie-Gower模型。给出了内部不动点的存在性及其局部渐近稳定性。在此基础上,利用分岔理论和中心流形定理,研究了倍周期分岔和Neimark-Sacker分岔。并取临界参数进行数值模拟,验证了倍周期分岔和Neimark-Sacker分岔的存在性。In this paper, we investigate the dynamics of predator with Michaelis-Menten discrete predator-prey model. In order to explore the rich dynamic properties of the model, the discrete-time Leslie-Gower model is obtained by using Euler approximation. The existence of internal fixed points and their local asymptotic stability are given. On this basis, using bifurcation theory and central manifold theorem, the period-doubling bifurcation and Neimark-Sacker bifurcation are studied. The existence of period-doubling bifurcation and Neimark-Sacker bifurcation is verified by numerical simulation with critical parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.152.109