检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:伍志斌
出 处:《应用数学进展》2025年第2期263-273,共11页Advances in Applied Mathematics
摘 要:基于再生核Hilbert空间的相关知识,再生核Hilbert空间中的函数可以表示用n个再生点构成的核函数的线性表示进行逼近。为了实现n个再生点的最优选取,文章借助Santin等人提出f-greedy、P-greedy、f/P-greedy等贪婪类算法,实现上述方法在微分方程数值求解的理论推导及算法实验。与传统的均匀取点相比,P-greedy和预正交自适应Fourier分解(POAFD)的贪婪算法逼近误差更优,但f-greedy和f/P-greedy效果还存在改进的空间。Based on the knowledge of real regenerated kernel Hilbert space, the function in the regenerated kernel Hilbert space can be approximated by a linear representation of the kernel function composed of n regenerated points. In order to achieve the optimal selection of n regeneration points, Santin et al. put forward a greedy algorithm such as F-greedy, P-greedy, and f/P-greedy to achieve the theoretical derivation and algorithm experiment of the above method in numerical solution of differential equations. Compared to the traditional method of uniformly taking points, the P-greedy and Pre-Orthogonal Adaptive Fourier Decomposition (POAFD) greedy algorithms provide better approximation errors, while the f-greedy and f/P-greedy algorithms do not perform as well and have room for improvement.
关 键 词:微分方程数值解 POAFD 再生核HILBERT空间
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7