检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2021年第5期1496-1502,共7页Computer Science and Application
摘 要:在MBR系统中,人们通常用膜通量或过滤阻力与操作参数的函数关系表征一个膜污染模型,但是膜污染是一个复杂的动态过程,经典的数学模型难以精确模拟。针对此问题,在本文中使用过滤阻力表征膜污染,利用BP神经网络对MBR系统中的膜的过滤阻力进行预测。然后利用粒子群算法优化神经网络的初始权值与阈值,提高神经网络获得全局最优解的能力。最后,我们将程序预测结果与实际实验数据做对比,发现该模型准确率较高,达到了预期效果。In the MBR system, people usually use the functional relationship between membrane flux or filtration resistance and operating parameters to characterize a membrane fouling model, but membrane fouling is a complex dynamic process, and classical mathematical models are difficult to accurately simulate. In response to this problem, the filtration resistance is used to characterize membrane fouling in this article, and the BP neural network is used to predict the filtration resistance of the membrane in the MBR system. Then the particle swarm algorithm is used to optimize the initial weights and thresholds of the neural network to improve the ability of the neural network to obtain the global optimal solution. Finally, we compare the program prediction results with the actual experimental data, and find that the model has a higher accuracy rate and achieves the expected effect.
关 键 词:膜生物反应器 膜过滤阻力 粒子群算法 BP神经网络
分 类 号:X70[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.117.210