检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张心文
机构地区:[1]广东工业大学自动化学院,广东 广州
出 处:《计算机科学与应用》2023年第6期1264-1272,共9页Computer Science and Application
摘 要:早先的基于哈希的跨模态检索方法因为语义提取以及运行速度慢不适合于大数据场景。因此提出一种新的框架叫做独特相似哈希(Unique Similar Hashing, USH)。USH是一个两步学习的哈希方法,先学习哈希码再学习哈希函数。第一阶段,用核函数将数据非线性地投影到核空间,然后使用矩阵分解学习潜在空间。哈希码从潜在空间中学习而来,为了避免量化误差并不放松哈希码的离散约束,而是直接计算它的封闭解。在学习一个优质的哈希码之后,再学习一个哈希函数将原始样本映射到低维的汉明空间。在Wiki数据集上与最先进的方法进行验证,USH在mAP上取得较好结果,证明了该方法的有效性。Earlier hash-based cross-modal retrieval methods were not suitable for big data scenarios due to problems with semantic extraction and slow running speed. Therefore, a new framework called Unique Similar Hashing (USH) was proposed. USH is a two-stage learning-based hashing method that learns hash codes first and then hash functions. In the first stage, data is nonlinearly projected to a kernel space using kernel functions, followed by learning a latent space using matrix factorization. Hash codes are then learned from the latent space by computing their closed-form solution directly instead of relaxing the discrete constraints to avoid quantization errors. After learning high-quality hash codes, a hash function is learned to map original samples to a low-dimensional Hamming space. It’s validated on the Wiki dataset against state-of-the-art methods, USH achieved good results in mAP, demonstrating the effectiveness of this approach.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.84