检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《生物医学》2021年第3期121-128,共8页Hans Journal of Biomedicine
摘 要:破译DNA序列所代表的信息是基因组研究的基本问题之一。基因调控编码由于存在多义性关系而变得非常复杂,而以往的生物信息学方法往往无法捕捉到DNA序列的隐含信息,尤其是在数据匮乏的情况下。因而从序列信息中预测DNA序列的结构和功能是计算生物学的一个重要挑战。为了应对这一挑战,我们引入了一种新的方法,通过使用自然语言处理领域的语言模型BERT将DNA序列表示为连续词向量。通过对DNA序列进行建模,BERT有效地从未标记的大数据中捕捉到了DNA序列中的序列特性。我们将DNA序列的这种新的嵌入表示称为DNAVec (DNA-to-Vector)。此外,我们可以从模型中提取出预训练的词向量用于表示DNA序列,用于其他序列级别的分类任务。Deciphering the information represented by DNA sequences is one of the fundamental problems of genomic research. Gene regulatory coding is complicated by the presence of polysense relationships, and previous bioinformatics methods often fail to capture the implicit information of DNA sequenc-es, especially when data are scarce. Predicting the structure and function of DNA sequences from sequence information is thus an important challenge in computational biology. To address this challenge, we introduce a new approach to represent DNA sequences as continuous word vectors by using the language model BERT from the field of natural language processing. By modelling DNA sequences, BERT effectively captures the sequence properties in DNA sequences from unlabelled big data. We refer to this new embedding representation of DNA sequences as DNAVec (DNA-to-Vector). In addition, we can extract pre-trained word vectors from the model for repre-senting DNA sequences for other sequence-level classification tasks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117