检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]齐鲁工业大学(山东省科学院)计算机科学与技术学院,山东 济南
出 处:《计算生物学》2020年第4期49-56,共8页Hans Journal of Computational Biology
摘 要:在生物信息学领域,对于蛋白质二级结构预测是一项具有挑战性的任务,对于确定蛋白质的结构和功能有着极其重要的意义。本文融合了生成对抗网络和卷积神经网络模型进行蛋白质二级结构预测,首先利用生成对抗网络提取蛋白质特征,其次将生成对抗网络提取的特征结合PSSM矩阵作为卷积神经网络的输入,得到预测结果。在测试集CASP9,CASP10,CASP11,CASP12,CB513和PDB25获得了87.06%,87.24%,87.31%,87.39%,88.13%和88.93%,比单独使用卷积神经网络提高了3.88%,4.6%,7.97%,5.85%,5.78%,4.25%。实验结果表明,生成对抗网络特征提取能力是非常显著的。In the field of bioinformatics, the prediction of protein secondary structure is a challenging task, and it is extremely important for determining the structure and function of proteins. In this paper, the generation of adversarial networks and convolutional neural network models are combined for protein secondary structure prediction. First, the anti-network is generated to extract protein fea-tures. Secondly, the extracted features of the anti-network are combined with the PSSM matrix as the input of the convolutional neural network to obtain the prediction results. In the test set CASP9, CASP10, CASP11, CASP12, CB513 and PDB25 obtained 87.06%, 87.24%, 87.31%, 87.39%, 88.13% and 88.93%, which is 3.88%, 4.6%, 7.97%, 5.85%, 5.78%, 4.25% higher than the convolutional neural network alone. The experimental results show that the feature extraction ability of generat-ing adversarial networks is very significant.
关 键 词:生物信息学 生成对抗网络 卷积神经网络 蛋白质二级结构预测
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.162.245