基于语料库的政治文本英译特征分析——以2013~2022年《政府工作报告》和《国情咨文》为例  

A Corpus-Based Analysis of the Characteristics of English Translation of Political Texts—Taking Report on the Work of the Government and State of the Union Address from 2013 to 2022 as Examples

在线阅读下载全文

作  者:李婷 

机构地区:[1]上海海事大学外国语学院,上海

出  处:《现代语言学》2023年第6期2640-2649,共10页Modern Linguistics

摘  要:基于语料库的翻译研究已成为翻译研究领域中一种新的研究范式。政治文本作为外界了解中国的一个重要手段,其翻译工作有着举足轻重的地位。近年来,国内关于政治文本的英译研究大多都是针对某一年的单个文本,对其系统的总体特征关注不足。因此,本文以2013~2022年《政府工作报告》及其英译本为研究对象,以同时期美国《国情咨文》为参照,利用AntConc和Wordsmith两种语料库工具,从类符–形符比、词频、句长、关键词四个方面分析政治文本英译的语言特征,并从齐普夫定律来验证《报告》英译本的用词是否符合自然语言规律,以期探索政治文本翻译的特征及规律,从而为今后的政治文本翻译提出建议。Corpus-based translation research has become a new research paradigm in the field of translation research. As an important means for the outside world to understand China, the translation of political texts has a pivotal position. In recent years, most of the domestic studies on English translation of political texts mostly focused on individual texts of a certain year, while the overall and systematic characteristics have not received adequate attention. Therefore, this paper takes the Report on the Work of the Government from 2013 to 2022 and its English translation version as the object of study, and takes the U.S. State of the Union Address of the same period as a comparison, uses the corpus tools, AntConc and Wordsmith to analyze the linguistic features of the English translation of political texts in terms of four aspects, namely, the type-token ratio, word frequency, sentence length, and keywords, and verifies whether the use of words in the English translation of the Report conform with the principle of natural language by the Zipf’s law to explore the characteristics and rules of political text translation, so as to make suggestions for the future translation of political texts.

关 键 词:语料库 政治文本 《政府工作报告》 

分 类 号:H31[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象